Estimating a Few Extreme Singular Values and Vectors for Large-Scale Matrices in Tensor Train Format

نویسندگان

  • Namgil Lee
  • Andrzej Cichocki
چکیده

We propose new algorithms for singular value decomposition (SVD) of very large-scale matrices based on a low-rank tensor approximation technique called the tensor train (TT) format. The proposed algorithms can compute several dominant singular values and corresponding singular vectors for large-scale structured matrices given in a TT format. The computational complexity of the proposed methods scales logarithmically with the matrix size under the assumption that both the matrix and the singular vectors admit low-rank TT decompositions. The proposed methods, which are called the alternating least squares for SVD (ALS-SVD) and modified alternating least squares for SVD (MALS-SVD), compute the left and right singular vectors approximately through block TT decompositions. The very large-scale optimization problem is reduced to sequential small-scale optimization problems, and each core tensor of the block TT decompositions can be updated by applying any standard optimization methods. The optimal ranks of the block TT decompositions are determined adaptively during iteration process, so that we can achieve high approximation accuracy. Extensive numerical simulations are conducted for several types of TT-structured matrices such as Hilbert matrix, Toeplitz matrix, random matrix with prescribed singular values, and tridiagonal matrix. The simulation results demonstrate the effectiveness of the proposed methods compared with standard SVD algorithms and TT-based algorithms developed for symmetric eigenvalue decomposition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing low-rank approximations of large-scale matrices with the Tensor Network randomized SVD

We propose a new algorithm for the computation of a singular value decomposition (SVD) low-rank approximation of a matrix in the Matrix Product Operator (MPO) format, also called the Tensor Train Matrix format. Our tensor network randomized SVD (TNrSVD) algorithm is an MPO implementation of the randomized SVD algorithm that is able to compute dominant singular values and their corresponding sin...

متن کامل

Computation of extreme eigenvalues in higher dimensions using block tensor train format

We consider an approximate computation of several minimal eigenpairs of large Hermitian matrices which come from high–dimensional problems. We use the tensor train format (TT) for vectors and matrices to overcome the curse of dimensionality and make storage and computational cost feasible. Applying a block version of the TT format to several vectors simultaneously, we compute the low–lying eige...

متن کامل

The singular values and vectors of low rank perturbations of large rectangular random matrices

In this paper, we consider the singular values and singular vectors of finite, low rank perturbations of large rectangular random matrices. Specifically, we prove almost sure convergence of the extreme singular values and appropriate projections of the corresponding singular vectors of the perturbed matrix. As in the prequel, where we considered the eigenvalues of Hermitian matrices, the non-ra...

متن کامل

An Implicitly Restarted Block Lanczos Bidiagonalization Method Using Leja Shifts

In this paper, we propose an implicitly restarted block Lanczos bidiagonalization (IRBLB) method for computing a few extreme or interior singular values and associated right and left singular vectors of a large matrix A. Our method combines the advantages of a block routine, implicit shifting, and the application of Leja points as shifts in the accelerating polynomial. The method neither requir...

متن کامل

Estimating the Largest Singular Values/Vectors of Large Sparse Matrices via Modified Moments

This dissertation considers algorithms for determining a few of the largest singular values and corresponding vectors of large sparse matrices by solving equivalent eigenvalue problems. The procedure is based on a method by Golub and Kent for estimating eigenvalues of equvalent eigensystems using modified moments. The asynchronicity in the computations of moments and eigenvalues makes this meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2015